PC-12977/N

K-10/2111

ALGEBRA-I (Math 1101 T/AMCM-1101 T)
 (Semester-I)
 (Common for AMC and Math)

Time : Three Hours]
[Maximum Marks : 70
Note : Attempt five questions in all, selecting two questions from each Section A and B carrying 10 marks each and compulsory question of Section C carrying 30 marks.

SECTION-A

I. Prove that a group G is solvable iff it has a normal series with abelian factors. Deduce that a finite group is solvable iff its composition factors are cyclic groups of prime orders.
II. Prove that subgroup and homomorphic image of a nilpotent group is nilpotent. Is the converse true? Prove or disprove.
III. Let H be a normal subgroup of alternating group A_{n}, $n \geq 5$. Prove that H contains all the 3 -cycles of S_{n}. (10)
IV. State and prove Burnside Theorem.

SECTION-B

V. Let G be a group of order $p q$, where p and q are prime numbers such that $p<q$ and $p \dagger(q-1)$. Prove that G is cyclic. What will happen if $p=q$?
VI. Prove that two cyclic groups of same order are isomorphic.
VII. Prove that in a non-zero commutative ring R with unity, an ideal M is maximal iff R / M is field.
VIII. For a ring R with unity, find all the ideals of the matrix ring $\mathrm{M}_{n}(\mathrm{R})$.

SECTION-C (Compulsory Question)

IX. (a) Prove that Jordan-Holder theorem implies the fundamental theorem of arithmetic.
(b) Define normal and subnormal series of a group. Give an example of a subnormal series which is not normal.
(c) Prove that any two conjugate permutations in S_{n} have the same cyclic structure.
(d) Prove that the center of a group is its normal subgroup.
(e) Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{G}=\mathrm{S}_{3}$. Let $*: \mathrm{G} \times \mathrm{A} \rightarrow \mathrm{A}$ s.t., $\sigma * \alpha=\sigma(\alpha)$. Prove that * is a group action and find all the stabilizers.
(f) State fundamental theorem of finitely generated abelian groups.
(g) Find all non-isomorphic abelian groups of order 720.
(h) Prove that there is no simple group of order 56.
(i) Prove that intersection of two ideals of a ring is an ideal of the ring.
(j) Let G be a group of order p^{n} (p - prime and $n-$ positive integer). Prove that $Z(G)$ is non-trivial.
($10 \times 3=30$)

