Roll No. \qquad

SECTION—A

11781/NJ

D-4/2111

CALCULUS-I

Paper-1101T

Semester-I

Time Allowed : 3 Hours] [Maximum Marks : 70

Note : The candidates are required to attempt two questions each from Sections A and B carrying 10 marks each and the entire Section C consisting of 10 short answer type questions carrying 3 marks each.

11781/NJ/605/W/510
[P. T. O.

1. (a) Using $\in-\delta$ definition prove the limit statement:
$\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$.
(b) Show that the equation $x^{3}-15 x+1=0$ has three solutions in the interval $[-4,4]$. 10
2. (a) Define continuity of a function at a point. Give an example of a function which is discontinuous at every point of the real interval.
(b) Does the graph of $f(x)=\left\{\begin{array}{cc}x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & 0\end{array}\right\}$ has a tangent at origin? Give reasons for your answer.
3. (a) Find all the asymptotes of the curve :
$(x-y)^{2}(x-2 y)(x-3 y)-2 a\left(x^{3}-y^{3}\right)-2 a^{2}$
$(x-2 y)(x+y)=0$.
(b) A hot-air balloon rising straight up from a level field is tracked by range finder 500 ft from the lift-off point. At the moment the range finder's elevation angle is 45 degree, the angle is increasing at the rate of $0.14 \mathrm{rad} / \mathrm{min}$. How fast is the balloon rising at that moment? 10
4. (a) Prove that the functions with same derivatives differ by a constant only.
(b) Trace the curve $y=2 x-3 x^{\frac{2}{3}}$.

SECTION-B

5. (a) Evaluate : $\int \mathrm{x}^{\frac{1}{2}} \sin \left(\mathrm{x}^{\frac{3}{2}}+1\right) \mathrm{dx}$.
(b) Suppose that f is continuous and that:
$\int_{1}^{2} f(x) d x=4$. Show that $f(x)=4$ atleast once on [1,2].
6. (a) A pyramid 3 m high has a square base that is 3 m on a side. The cross section of pyramid perpendicular to the altitude x m down from the vertex is a square $\mathrm{x} m$ on a side. Find the volume of the pyramid.
(b) Find the area of the surface generated by revolving the curve $\mathrm{y}=\mathrm{x}^{3}, 0 \leq \mathrm{x} \leq \frac{1}{2}$ about the x axis.
7. Find a power series solution for $y^{\prime \prime}+x^{2} y=0 . \quad 10$
8. (a) Check the convergence of the series :
(i) $\quad \sum_{n=1}^{\infty} \frac{(\mathrm{n}+3)!}{3!\mathrm{n}!3^{\mathrm{n}}}$.
(ii) $\sum_{\mathrm{n}=2}^{\infty} \frac{\log \mathrm{n}}{\sqrt{\mathrm{n}}}$.
(iii) Use partial fractions to find the sum of the series : $\sum_{n=1}^{\infty} \frac{40 n}{(2 n-1)^{2}(2 n+1)^{2}}$.
(b) Check for absolute convergence of the series :

$$
\begin{equation*}
\sum_{n=1}^{\infty}(-1)^{n}(\sqrt{n+\sqrt{n}}-\sqrt{n}) . \tag{10}
\end{equation*}
$$

SECTION—C

9. Answer the following questions briefly : $3 \times 10=30$
(i) What are different types of discontinuities of a function. Define $g(4)$ in a way that extends $g(x)=\frac{x^{2}-16}{\left(x^{2}-3 x-4\right)}$ to be continuous at $\mathrm{x}=4$.
(ii) Does the curve $y=x^{2}-2 x^{2}+2$ have any horizontal tangent? If so, where?
(iii) Define critical point. Does every critical point signals the presence of extreme value? Justify.
(iv) Find the critical points of $y=x^{\frac{5}{3}}-5 x^{\frac{2}{3}}$.
(v) The edge of a cube is measured as 10 cm with an error of 1%. The cube's volume is to be calculated from this measurement. Estimate the percentage error in the volume calculation.
(vi) Solve the initial value problem $\frac{d y}{d x}=\frac{1}{x^{2}}+x, x>0 ; y(2)=1$.
(vii) Estimate the average value of $f(x)=x^{2}$ on the interval $[-1,1]$.
(viii) Express the limit $\lim _{\|\mathbb{P}\| \rightarrow 0} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{C}_{\mathrm{k}}\right)^{2} \Delta \mathrm{x}_{\mathrm{k}}$, where P is a partition on $[0,2]$.
(ix) State Integral and Ratio test used to check the convergence of a series.
(x) Show that $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges.
